Rebayes: an R Package for Empirical Bayes Mixture Methods
نویسندگان
چکیده
Models of unobserved heterogeneity, or frailty as it is commonly known in survival analysis, can often be formulated as semiparametric mixture models and estimated by maximum likelihood as proposed by Robbins (1950) and elaborated by Kiefer and Wolfowitz (1956). Recent developments in convex optimization, as noted by Koenker and Mizera (2014b), have led to dramatic improvements in computational methods for such models. In this vignette we describe an implementation contained in the R package REBayes with applications to a wide variety of mixture settings: Gaussian location and scale, Poisson and binomial mixtures for discrete data, Weibull and Gompertz models for survival data, and several Gaussian models intended for longitudinal data. While the dimension of the nonparametric heterogeneity of these models is inherently limited by our present gridding strategy, we describe how additional fixed parameters can be relatively easily accommodated via profile likelihood. We also describe some nonparametric maximum likelihood methods for shape and norm constrained density estimation that employ related computational methods.
منابع مشابه
EbayesThresh: R and S-PLUS programs for Empirical Bayes thresholding
This report sets out a package of R and S-PLUS routines that implement a class of Empirical Bayes thresholding methods. The prior considered for each parameter in a sequence is a mixture of an atom of probability at zero and a heavy-tailed density. The package allows for the heavy-tailed density to be either a Laplace (double exponential) density or else a mixture of normal distributions with t...
متن کاملEbayesThresh: R Programs for Empirical Bayes Thresholding
Suppose that a sequence of unknown parameters is observed subject to independent Gaussian noise. The EbayesThresh package in the S language implements a class of Empirical Bayes thresholding methods that can take advantage of possible sparsity in the sequence, to improve the quality of estimation. The prior for each parameter in the sequence is a mixture of an atom of probability at zero and a ...
متن کاملEmpirical Bayes Estimation in Nonstationary Markov chains
Estimation procedures for nonstationary Markov chains appear to be relatively sparse. This work introduces empirical Bayes estimators for the transition probability matrix of a finite nonstationary Markov chain. The data are assumed to be of a panel study type in which each data set consists of a sequence of observations on N>=2 independent and identically dis...
متن کاملInvariant Empirical Bayes Confidence Interval for Mean Vector of Normal Distribution and its Generalization for Exponential Family
Based on a given Bayesian model of multivariate normal with known variance matrix we will find an empirical Bayes confidence interval for the mean vector components which have normal distribution. We will find this empirical Bayes confidence interval as a conditional form on ancillary statistic. In both cases (i.e. conditional and unconditional empirical Bayes confidence interval), the empiri...
متن کاملUnobserved Heterogeneity in Longitudinal Data An Empirical Bayes Perspective
Abstract. Empirical Bayes methods for Gaussian and binomial compound decision problems involving longitudinal data are considered. A new convex optimization formulation of the nonparametric (Kiefer-Wolfowitz) maximum likelihood estimator for mixture models is used to construct nonparametric Bayes rules for compound decisions. The methods are illustrated with some simulation examples as well as ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016